Аддитивные технологии. Аддитивные технологии – что это такое и где применяются? Металлические порошки для аддитивных технологий

Во введении пособия для инженеров «Аддитивные технологии в машиностроении», изданного в ГНЦ РФ ФГУП «НАМИ» говорится: «Машины, строящие детали из металла - поистине верх инженерного искусства». И, действительно, насколько 3D-печать инновационная и продуктивная технология для промышленности в целом, настолько трехмерная печать металлами - пик развития общего машиностроения.

В какой из сфер машиностроения аддитивные технологии нужны больше?

Из всех отраслей и сфер машиностроения, наивысшая рентабельность аддитивных технологий отмечается в транспортной. Именно она больше других нуждается в снижении производственных потерь сырья при создании изделий сложной геометрии и повышенной плотности. Для нее же важную роль играет скорость обмена данными между инженерами, дизайнерами, конструкторами и др.

Направления транспортного машиностроения:

  • железнодорожное машиностроение и вагоностроение;
  • судостроение;
  • авиационная промышленность;
  • ракетно-космическая отрасль.

Даже при учете, что 3D-печать улучшает эффективность каждого из названных направлений, наибольшая польза от аддитивного производства приходится на два последних.

Как аддитивные технологии используют в авиационном машиностроении?



3D-технологии в авиации применяются для сканирования, моделирования, прототипирования и печати деталей воздушных судов. Из последних достижений -израильская компания Eviation Aircraft при помощи 3D-принтеров от Stratasys создала прототип электросамолета , вмещающего 11 пассажиров.

В России данную сферу весьма активно осваивает Национальный институт авиационных технологий. К примеру, несколько лет назад ОАО НИАТ провело эксперимент по замене в самолетном двигателе сварных топливных форсунок на 3D-печатные. Результатом эксперимента стало снижение процента брака, а также уменьшение массы всего изделия на 17%.

Пример аддитивных технологий в ракетно-космическом машиностроении



В ракетно-космической отрасли 3D-печать применяется по двум направлениям: для строительства космических аппаратов в земных условиях и как способ создания различных изделий .

Пожалуй, за последнее время самым значимым достижением российских исследователей в этой отрасли стало создание и запуск летом 2017-го 3D-печатного наноспутника , разработанного в Томском политехе.

Изделия создаются за счет добавления металлического порошка, либо металлической проволоки, либо металлического расплава туда, куда нужно. И такой подход позволяет, с одной стороны, очень здорово экономить материал, а с другой стороны, совершенно революционным образом повышать производительность процессов. И то, что раньше делалось месяцами, сейчас может делаться за часы. И третье, что дают аддитивные технологии и что невозможно получить по-другому, — это возможность создавать изделия такой формы, которую никакие традиционные технологии принципиально создать не могли.

Аддитивные технологии находят активное применение в энергомашиностроении, приборостроении, авиационной промышленности , космической индустрии, там, где высока потребность в изделиях сложной геометрии. В России с аддитивными технологиями познакомилось уже немало предприятий. Предлагаем вашему вниманию материал из альманаха «Управление производством» , в котором описывается несколько примеров эффективного внедрения 3D-печати.

Аддитивные технологии открыли возможность изготовления деталей любой сложности и геометрии без технологических ограничений. Геометрию детали можно менять еще на стадии проектирования и испытания.

Подготовка файлов для печати осуществляется на компьютерах со стандартным программным обеспечением , в работу принимаются файлы формата STL. Это широко используемый сегодня формат хранения трехмерных объектов для стереолитографических 3D-принтеров. Инвестиции в проект составили порядка 60 млн рублей.

Александр Зданевич, ИТ-директор НПК «Объединенная Вагонная Компания»: «Технологии аддитивной печати прогрессируют, и, вероятнее всего, уже в ближайшем будущем они изменят лицо целого ряда индустрий. Главным образом это касается предприятий, на которых выпускаются штучные товары под конкретный заказ. С массовым производством дело обстоит сложнее, хотя разные типы 3D-принтеров уже сейчас находят применение в данной области.

Существует множество технологий объемного синтеза. Одной из перспективных для промышленного внедрения является . Процесс можно разделить на два этапа. На первом формируется слой построения в виде равномерно распределенного по поверхности рабочей платформы жидкого фотополимера . Затем происходит выборочное отверждение участков данного слоя в соответствии с текущим сечением построенной на компьютере 3D-модели.

Применительно к железнодорожному машиностроению данную технологию можно использовать на этапе подготовки литейного производства, в частности, при производстве комплекта литейной оснастки. Один и тот же комплект оснастки, уникальный под каждую отливку, используется на протяжении тысяч циклов производства соответствующих литейных форм.

От соблюденной в процессе изготовления комплекта оснастки точности всех предусмотренных конструкторами параметров напрямую зависит качество конечного изделия. Традиционный способ изготовления комплекта оснастки путем механической обработки материалов (металла, пластика, иногда и дерева) весьма трудоемок и длителен (подчас занимает до нескольких месяцев), при этом чувствителен к ошибкам.

В «отпечатанные» модели можно встроить и другие узлы и агрегаты. Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

Значительную работу по продвижению аддитивных технологий проводит Госкорпорация «Росатом» . Руководство уверено, что скоро в госкорпорации будут присутствовать все компоненты «цифрового производства» – от разработки материалов, оборудования, технологий до производства изделий. В отрасли реализуется программа по аддитивным технологиям, она состоит из подразделов: технология, сырье, оборудование, стандартизация. Разработкой технологий производства металлических порошков для 3D-печати в Росатоме занимаются три института: «Гиредмет», ВНИИХТ, ВНИИНМ. Одновременно ведется работа по созданию опытного образца 3D-принтера для трехмерной печати металлических и композитных изделий. Росатом планирует представить образец уже к концу 2017 года.

Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

«К началу 2018 года мы должны весь цикл по аддитивным технологиям внутри Росатома замкнуть. Нам нужен еще год, чтобы запустить свой собственный пилотный образец установки, и примерно столько же – для того, чтобы договориться со всеми сторонами, которые обеспечивают используемую нормативную составляющую», – рассказал Алексей Дуб.

Оригинал этого материала: Аддитивные технологии: возможности и перспективы 3D-печати. «Управление производством. Цифровое производство» , апрель 2017. Публикуется в сокращении.

Применение новых технологий - главный тренд последних лет в любой сфере промышленного производства. Каждое предприятие в России и мире стремиться создавать более дешевую, надежную и качественную продукцию, использую самые совершенные методы и материалы. Использование аддитивных технологий - один из ярчайших примеров того, как новые разработки и оборудование могут существенно улучшать традиционное производство.

Что такое аддитивные технологии?

Аддитивные технологии производства позволяют изготавливать любое изделие послойно на основе компьютерной 3D-модели. Такой процесс создания объекта также называют «выращиванием» из-за постепенности изготовления. Если при традиционном производстве в начале мы имеем заготовку, от которой оптом отсекаем все лишнее, либо деформируем ее, то в случае с аддитивными технологиями из ничего (а точнее, из аморфного расходного материала) выстраивается новое изделие. В зависимости от технологии, объект может строиться снизу-вверх или наоборот, получать различные свойства.

Общую схему аддитивного производства можно изобразить в виде следующей последовательности:

Первые аддитивные системы производства работали главным образом с полимерными материалами . Сегодня 3D-принтеры , олицетворяющие аддитивное производство, способны работать не только с ними, но и с инженерными пластиками , композитными порошками , различными типами металлов , керамикой, песком . Аддитивные технологии активно используются в машиностроении, промышленности, науке, образовании, проектировании, медицине, литейном производстве и многих других сферах.

Наглядные примеры того, как аддитивные технологии применяются в промышленности - опыт BMW и General Electric:

Преимущества аддитивных технологий

  • Улучшенные свойства готовой продукции. Благодаря послойному построению, изделия обладают уникальным набором свойств. Например, детали, созданные на металлическом 3D-принтере по своему механическому поведению, плотности, остаточному напряжении и другим свойствам превосходят аналоги, полученные с помощью литья или механической обработки.
  • Большая экономия сырья. Аддитивные технологии используют практически то количество материала, которое нужно для производства вашего изделия. Тогда как при традиционных способах изготовления потери сырья могут составлять до 80-85%.
  • Возможность изготовления изделий со сложной геометрией. Оборудование для аддитивных технологий позволяет производить предметы, которые невозможно получить другим способом. Например, деталь внутри детали. Или очень сложные системы охлаждения на основе сетчатых конструкций (этого не получить ни литьем, ни штамповкой).
  • Мобильность производства и ускорение обмена данными. Больше никаких чертежей, замеров и громоздких образцов. В основе аддитивных технологий лежит компьютерная модель будущего изделия, которую можно передать в считанные минуты на другой конец мира - и сразу начать производство.

Схематично различия в традиционном и аддитивном производстве можно изобразить следующей схемой:

Аддитивное производство: технологии и материалы

Под аддитивным производством понимают процесс выращивания изделий на 3D-принтере по CAD-модели. Этот процесс считается инновационным и противопоставляется традиционным способам промышленного производства.

Сегодня можно выделить следующие технологии аддитивного производства:

  • FDM (Fused deposition modeling) - послойное построение изделия из расплавленной пластиковой нити. Это самый распространенный способ 3D-печати в мире, на основе которого работают миллионы 3D-принтеров - от самых дешевых до промышленных систем трехмерной печати. FDM-принтеры работают с различными типами пластиков, самым популярным и доступным из которых является ABS. Изделия из пластика отличаются высокой прочностью, гибкостью, прекрасно подходят для тестирования продукции, прототипирования, а также для изготовления готовых к эксплуатации объектов. Крупнейшим в мире производителем пластиковых 3D-принтеров является американская компания Stratasys .
    .

  • SLM (Selective laser melting) - селективное лазерное сплавление металлических порошков. Самый распространенный метод 3D-печати металлом. С помощью этой технологии можно быстро изготавливать сложные по геометрии металлические изделия, которые по своим качествам превосходят литейное и прокатное производство. Основные производители систем SLM-печати - немецкие компании SLM Solutions и Realizer .
    .

  • SLS (Selective laser sintering) - селективное лазерное спекание полимерных порошков. С помощью этой технологии можно получать большие изделия с различными физическими свойствами (повышенная прочность, гибкость, термостойкость и др). Крупнейшим производителем SLS-принтеров является американский концерн 3D Systems .
    .

  • SLA (сокращенно от Stereolithography) - лазерная стереолитография, отверждение жидкого фотополимерного материала под действием лазера. Эта технология аддитивного цифрового производства ориентирована на изготовление высокоточных изделий с различными свойствами. Крупнейшим производителем SLA-принтеров является американский концерн 3D Systems .
    .

В отдельную категорию стоит вынести технологии быстрого прототипирования . Это способы 3D-печати, предназначенные для получения образцов для визуальной оценки, тестирования или мастер-моделей для создания литейных форм.

  • MJM (Multi-jet Modeling) - многоструйное моделирование с помощью фотополимерного или воскового материала. Эта технология позволяет изготавливать выжигаемые или выплавляемые мастер-модели для литья, а также - прототипы различной продукции. Используется в 3D-принтерах серии ProJet компании 3D Systems.
  • PolyJet - отверждение жидкого фотополимера под воздействием ультрафиолетового излучения. Используется в линейке 3D-принтеров Objet американской компании Stratasys . Технология используется для получения прототипов и мастер-моделей с гладкими поверхностями.
  • CJP (Color jet printing) - послойное распределение клеящего вещества по порошковому гипсовому материалу. Технология 3D-печати гипсом используется в 3D-принтерах серии ProJet x60 (ранее называлась ZPrinter). На сегодняшний день - это единственная промышленная технология полноцветной 3D-печати. С ее помощью изготавливают яркие красочные прототипы продукции для тестирования и презентаций, а также различные сувениры, архитектурные макеты.

Аддитивные технологии в России

Отечественные предприятия с каждым годом все более активно используют системы 3D-печати в производственных и научных целях. Оборудование для аддитивного производства, грамотно встроенное в производственную цепочку, позволяет не только сократить издержки и сэкономить время, но и начать выполнять более сложные задачи.

Компания Globatek.3D с 2010 года занимается поставкой в Россию новейших систем 3D-печати и 3D-сканирования. Оборудование, установленное нашими специалистами, работает в крупнейших университетах (МГТУ им. Баумана, МИФИ, МИСИС, Приволжском, СГАУ и других) и промышленных предприятиях, учреждениях ВПК и аэрокосмической отрасли.

Репортаж телеканала «Россия» об использовании SLM 280HL, установленном специалистами Globatek.3D в Самарском государственном аэрокосмическом университете:

Специалисты GLobatek.3D помогают профессионалам из различных областей подобрать 3D-оборудование, которое будет максимально эффективно решать задачи, стоящие перед предприятием. Если ваша компания планирует приобрести оборудование для аддитивного производства, позвоните по телефону +7 495 646-15-33 , и консультанты компании Globatek.3D помогут вам с выбором.

Globatek.3D - 3D-оборудование для профессионалов.

Аддитивные технологии - один из главных мировых трендов, упоминаемых в контексте новой промышленной революции. Ежегодный рост этого рынка, который на самом деле еще не сформирован и не имеет четких границ, варьируется в пределах 20-30%.

Так, ведущая консалтинговая компания в индустрии 3D-печати Wohlers Associates сообщила в своем очередном ежегодном отчете (Wohlers Report 2017), что индустрия аддитивного производства выросла в 2016 году на 17,4% (в 2015-м - на 25,9%) и составляет сейчас свыше $6 млрд. Если в 2014 году системы 3D-печати выпускали 49 компаний, то по итогам прошлого года число производителей увеличилось до 97. Эксперты дают самые оптимистичные прогнозы - по оценкам аналитической компании Context, рынок аддитивных технологий достигнет $17,8 млр уже к 2020 году. Аналитики The Boston Consulting Group посчитали: если к 2035 году компаниям удастся внедрить 3D-печать хотя бы на 1,5% от своих общих производственных мощностей, то объем рынка превысит к этому времени $350 млрд.

Ажиотаж вокруг этой темы вполне объясним. В отличие от традиционных технологий обработки металла, аддитивное производство построено не на вычитании, а на добавлении материала. На выходе получаются детали сложной геометрической формы, сделанные в короткие сроки. Когда скорость изготовления продукции сокращается в десятки раз и коренным образом меняются издержки, это меняет всю экономику машиностроения.

За счет чего происходит удешевление производства? Во-первых, снижается число комплектующих частей создаваемых деталей. Например, чтобы изготовить обычным методом топливную форсунку для реактивного двигателя, необходимо приобрести около 20 разных запчастей и соединить их с помощью сварки, что является трудоемким и затратным процессом. Применение же 3D-печати позволяет создавать форсунку из одного цельного куска.

Благодаря этому снижается и вес готовой детали, что особенно ценно для авиационной отрасли. Производители авиадвигателей уже научились создавать аддитивным способом различные кронштейны и втулки, которые на 40-50% легче своих «традиционных» аналогов и не теряют при этом прочностных характеристик. Почти вдвое удается снизить вес и отдельных деталей в вертолетостроении, например, связанных с управлением хвостовым винтом российского вертолета «Ансат». Уже появились и первые прототипы 3D-печатных четырехцилиндровых автомобильных двигателей, которые на 120 кг легче стандартных аналогов.

Другой важный момент - экономия исходного сырья и минимизация отходов. Собственно, сама суть аддитивных технологий заключается в том, чтобы использовать ровно столько материала, сколько требуется для создания той или иной детали. При традиционных способах изготовления потери сырья могут составлять до 85%. Но наиболее, пожалуй, важное преимущество аддитивных технологий заключается в том, что трехмерные компьютерные модели деталей можно мгновенно передавать по сети на производственную площадку в любую точку мира. Таким образом, меняется сама парадигма промышленного производства - вместо огромного завода достаточно обладать локальным инжиниринговым центром с необходимым 3D-оборудованием.

Впрочем, так обстоят дела в теории. На практике же сфера аддитивного производства - это история про поливариативность, про то, как технологии опередили возможные сценарии их применения. Вся передовая промышленная общественность осознает, что в их руках находится крайне перспективная базовая технология, но что с ней делать - остается открытым вопросом.

На сегодняшнем этапе главной задачей является как раз поиск сфер применения аддитивных технологий, и пока эту проблему еще никто не решил. Не найден ответ и на другой фундаментально важный вопрос: где находится тот «водораздел», при котором применение аддитивных технологий становится экономически эффективнее традиционных, классических способов - штамповки и литья? К примеру, ни один из крупных мировых игроков по производству газовых турбин, в том числе и на российском рынке, пока не определился в том, какая из конкурирующих технологий будет применяться в будущем для производства лопаток для двигателя самолета - аддитивные технологии или традиционное литье.

Программы поддержки аддитивной промышленности в зарубежных странах сводятся в основном к двум направлениям - финансированию НИОКР и формированию консорциумов, объединяющих предприятия, исследовательские центры и университеты.

К примеру, в США в 2012 году был создан Национальный институт инноваций в области аддитивной промышленности («America Makes») с целью объединения усилий американских компаний и научных кругов, занимающихся передовыми производственными технологиями. Общая стоимость проекта составила $70 млн, из них $30 млн вложило правительство. Основным куратором Института выступает Министерство обороны США, поэтому созданный акселератор поддерживает инновационные разработки, связанные также с военной сферой. Такие, например, как напечатанный на 3D-принтере гранатомет RAMBO .

Практически каждый десятый 3D-принтер произведен в Китае, а местный рынок аддитивных технологий, согласно прогнозам, будет показывать ежегодный рост на 40% и превысит к 2018 году 20 млрд юаней . При помощи технологии 3D-печати цементными смесями китайцы даже печатают жилые дома и «офисы будущего» на берегу Персидского залива. Ключевой структурой в стране, объединяющей несколько десятков местных инновационных центров, является Индустриальный альянс Китая по технологиям 3D-печати.

Россия пока отстает от стран – технологических лидеров по вкладу в общий рынок аддитивных технологий. Но я бы не стал называть это отставание критичным. Просто потому, что глобальная конкурентная борьба ведется не на «поляне» создания непосредственно аддитивных машин, принтеров и порошков. Конкуренция состоит в поиске рыночных ниш применения аддитивных технологий. Выиграет в ней не тот, кто нарастит производство своих аддитивных установок или сырья, а тот, кто поймет, что именно нужно печатать, для чего, и в каких областях это принесет максимальный экономический эффект.

В оживленных дискуссиях, которые ведутся сейчас на тему развития аддитивных технологий, противопоставляются обычно две крайности. Одна из них - «мы напечатаем всё»: дома, самолеты, танки, ракеты. Другая крайность – «все аддитивные технологии экономически неэффективны». И это тоже одна из ключевых системных проблем.

На сегодняшний день можно четко очертить только такие направления применения аддитивных технологий, как прототипирование и создание деталей сверхсложной геометрии. Например, на рынке систем прототипирования присутствуют сегодня более 30 отечественных серийных производителей 3D-принтеров, использующих технологию печати пластиковой нитью. Они выпускают около 5 000 принтеров ежегодно. Причем доля российских комплектующих в этих изделиях составляет порядка 70%.

В этот небольшой круг направлений можно добавить также быстрое мелкосерийное производство изделий по индивидуальному заказу. Однако производство конечных продуктов и быстрое изготовление прототипов – это две разные производственные «философии». Аддитивные технологии призваны, скорее, дополнить традиционные методы металлообработки, нежели заменить их, как предрекают многие эксперты.

Что происходит сейчас с мировой индустрией? Из большой промышленности, нацеленной на достижение эффекта масштаба, она превращается в глобальную гибкую сеть индивидуализированных производств. Аддитивные технологии также позволяют современному производству мигрировать из продуктового в сервисный сегмент.

Простой пример, уже реализованный на практике, – беспилотный летательный аппарат для нужд обороны, полностью напечатанный на 3D-принтере. Так как при его проектировании и изготовлении все основные процессы были автоматизированы, нет никакой нужды держать на каком-то заводе большой запас запчастей для этой техники. Вместо того чтобы отправлять ремонтировать беспилотник на завод, необходимые элементы можно будет печатать прямо на месте. Рабочие лопатки двигателей пока не печатают, но уже осуществляют их ремонт методом лазерной порошковой наплавки.

Чисто гипотетически можно провести аналогичную параллель с авианосцем, находящемся в походе, или с поездом. Имеющийся в распоряжении ремонтников принтер помог бы доработать или отремонтировать определенные детали, например, те же лопатки. Таким образом, аддитивные технологии, вероятнее всего, займут свое место именно в сервисном сегменте, отражая один из главных трендов развития современных промышленных технологий – кастомизацию продукции под потребителя.

В этой связи государственная политика по развитию данной сферы в России, должна опираться на следующие основные направления. Во-первых, это создание условий для снижения рисков, связанных с пилотным внедрением аддитивных технологий. В частности, с недавних пор действует новый механизм субсидирования, когда государство компенсирует предприятию 50% расходов, понесенных им при производстве и реализации пилотных партий промышленной продукции. Во-вторых, поддержку проектам в сфере аддитивных технологий оказывает Фонд развития промышленности, выдавая компаниям целевые льготные займы от 50 до 500 млн рублей под 5% годовых. Кроме того, участники рынка могут претендовать на финансовую поддержку со стороны государства для погашения части понесенных затрат на НИОКР.

Стимулирование разработок в сфере аддитивного производства необходимо поддерживать, так как их применение в современной промышленности – это долгий поиск, путем проб и ошибок, оптимальных ниш для решения конкретных задач. Например, можно создать что-то вроде «открытой библиотеки» технологических решений, объясняющей, как на конкретном станке, используя конкретный порошок, можно изготовить определенную деталь.

Другая важная задача – формирование эффективных площадок для взаимодействия конечных заказчиков с производителями материалов и оборудования. Такой Центр аддитивных технологий уже создается Ростехом на базе производителя газотурбинных двигателей НПО «Сатурн», имеющего многолетний опыт работы в области аддитивных технологий. Идею создания центра поддержали крупнейшие представители российской авиационной отрасли: Роскосмос, ОАК, ОДК, «Вертолеты России», «Технодинамика», КРЭТ и др.

Кроме того, тема аддитивных технологий - это прерогатива стартапов. Сейчас они зачастую просто скупаются мировыми технологическими гигантами. И сложно определить истинный мотив принятия данных решений: является ли это искренним желанием вкладываться в перспективное аддитивное направление, или же это просто попытка повысить свою капитализацию за счет своевременного поддержания модного тренда.

Так, в прошлом году американский концерн General Electric приобрел за $1,4 млрд две европейские компании, специализирующиеся на 3D-печати, - шведскую Arcam AB и немецкую SLM Solutions Group AG. Корпорация Siemens увеличила до 85% долю в британской компании Materials Solutions, специализирующейся на аддитивных технологиях в газотурбостроении. В начале 2017 года BMW, Google и Lowe’s сообща инвестировали $45 млн в американский стартап Desktop Metal, занимающийся созданием инновационной технологии 3D-печати металлических изделий. В общей сумме инвесторы вложили в этот проект, состоящий из 75 инженеров и программистов, уже около $100 млн

В связи с этим важно не допустить ситуации, при которой мы могли бы потерять наши успешные российские стартапы в сфере аддитивного производства. Разумеется, нельзя обойтись и без подготовки соответствующих инженерных кадров, которые могли бы профессионально разбираться в том, что целесообразно печатать, а что эффективнее продолжать делать традиционным методом.

Таким образом, основная проблема на сегодня заключается не в том, чтобы разработать современный отечественный 3D-принтер или создать качественные порошки (технологии ради самой технологии – довольно бессмысленная вещь), а в том, чтобы в нужном месте правильно применить уже имеющиеся на рынке разработки. Для этого у нас должны быть российские компании-драйверы, которые активно работали бы с этими технологиями, и максимально рационально и эффективно применяли бы их на практике.

Это госкорпорация Росатом, которая делает сейчас особую ставку на развитие аддитивных технологий, формируя собственную базу оборудования, материалов и технологий для выхода на новые внешние рынки. Это передовые наши компании в авиационной и ракетно-космической отрасли, которые объединились на базе упомянутого мной центра аддитивных технологий. Это Ростех, в состав которого входит «Объединенная двигателестроительная корпорация» (ОДК) – один из главных российских драйверов внедрения аддитивных технологий. Кроме того, в регионах создаются инжиниринговые центры – «точки роста» для инновационных компаний, которые помогают коммерциализировать разработки и доводить лабораторные образцы продукции до ее серийного производства.

Подобные, по-своему прорывные, примеры уже есть. Аддитивные технологии были успешно применены при изготовлении деталей двигателя ПД-14 для гражданской авиации, а также в конструкции нового газотурбинного двигателя морского применения, начало серийного производства которого запланировано на 2017 год. В области промышленного дизайна и быстрого прототипирования у российских специалистов есть передовые разработки, связанные со стрелковым оружием и аэрокосмической отраслью.

Это примеры успешного нахождения сфер для применения аддитивных технологий. Уже сейчас очевидно, что стопроцентной такой нишей станет медицина. Эндопротезы, биопринтинг, зубные мосты, ортопедия… Здесь аддитивные технологии уже переживают расцвет. В числе других потенциальных отраслей – инструментальная промышленность (производство инструментов и их шаблонов), космическая и авиационная сферы (легкие детали со сложной геометрией, компоненты турбин).

Аддитивные технологии связаны с поиском конкретных ниш, но и традиционная металлообработка не сдаст своих позиций в ближайшие годы. Важно не пропустить возможное изменение производственной парадигмы в тех отраслях, где мы традиционно сильны, а также искать новые сферы применения аддитивных технологий. Ведь ключевой вопрос заключается не в том, чтобы догнать и перегнать конкурентов, а в самой целесообразности этого забега и понимании того, на правильном ли треке мы находимся в конкретный момент.

08.06.2016

Перспективы применения аддитивных технологий при производстве дорожно-строительных машин

Основными направлениями развития машиностроения в настоящее время являются: применение новых полимерных, композиционных, интеллектуальных материалов при производстве деталей машин; разработка новых технологических методов, оборудования и процессов производства изделий машиностроения.

Первым шагом на пути создания машины является пространственное проектирование изделий машиностроения с применением компьютерных виртуальных цифровых трехмерных моделей, что стало возможно благодаря внедрению современного программного обеспечения (CAD-программы), моделирования и расчетов (CAE).

Внедрение технологий «трехмерной печати» (3D-печать) обеспечивает возможность создания детали машины или изделия в целом на основе разработанной 3D-модели в кратчайшие сроки и с минимальными потерями материалов. Методы изготовления изделий, основанные на процессе объединения материала с целью создания объекта из данных 3D-модели, получили обобщающее название «аддитивные технологии» (additive).

В этом контексте традиционные машиностроительные технологии, основанные на механической обработке заготовки, при которой происходит удаление части материала (точение, фрезерование), являются «отнимающими» (subtractive).

В основе современных аддитивных технологий лежит метод формирования детали из полимерного композиционного материала путем постепенного наращивания с помощью термического или какого-либо иного воздействия, в результате которого получается деталь необходимой формы с заданными размерами. В настоящее время существует уже более 30 различных типов аддитивных технологических процессов.

Основными преимуществами аддитивных технологий перед традиционными являются:

Сокращение трудоемкости изготовления;
сокращение сроков проектирования и изготовления детали;
снижение себестоимости проектирования и изготовления детали;
экономия машиностроительных материалов. Время возникновения аддитивных
технологий относится к концу 80-х годов прошлого века. Пионером в этой области является компания 3D Systems (США).

Первая классификация аддитивных технологических методов производства деталей была приведена в стандарте ASTM F2792.1549323-1 (США), в значительной степени устаревшая за последние двадцать лет в связи с бурным развитием технологического оборудования.

1 сентября 2015 года приказом Рос-стандарта создан технический комитет «Аддитивные технологии» для разработки терминов, определений и стандартов, относящихся к ним.

Разработка классификации аддитивных технологий с учетом разнообразия применяемых методов, материалов и оборудования является непростой задачей.

Во-первых, следует выделить два направления развития аддитивных технологий по принципу формирования детали

Направления развития аддитивных технологий по принципу формирования детали

Первое направление предусматривает формирование детали путем объединения материала, распределенного на рабочей поверхности платформы технологического оборудования (Bed deposition). После окончания процесса изготовления остается некоторый объём материала, который может использоваться для формирования следующей детали.

Процессы объединения материала, распределенного на платформе, заложены в основу различных видов технологического оборудования для производства деталей методами аддитивных технологий:

SLA – Steriolithography Apparatus;
SLM – Selective Laser Melting;
DMLS – Direct metal laser sintering;
EBM – Electron Beam Melting;
SHS – Selective Heat Sintering;
MIM – Metal Injection Molding;
Ink-Jet или Binder jetting;
UAM – Ultrasonic additive manufacturing;
LOM – Laminated Object Manufacturing.

Второе направление формирования деталей – путем прямого осаждения материала (Direct deposition). В этом случае изделие формируется послойно непосредственно из разогретого до необходимой температуры материала, поступающего на рабочую платформу из специального распределяющего устройства.

На принципе прямого осаждения материала построены следующие виды технологического оборудования для производства деталей методами аддитивных технологий:

CLAD – Construction Laser Additive Di-recte;
EBDM – Electron beam Direct Manufacturing;
MJS – Multiphase Jet Solidification;
BPM – Ballistic particle manufacturing;
MJM – Multi jetting Material.

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании
детали

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании детали

Классификация аддитивных технологий по виду используемого материала

Классификация аддитивных технологий по виду используемого материала

В зависимости от вида и исходной формы материала, используемого для изготовления деталей, различают виды аддитивных технологий

Классификация аддитивных технологий по виду и форме материала, используемого для изготовления деталей

Фидсток (Feedstock) – международное название гранулированной смеси порошка и связующего материала.

Очевидно, что для производства исходных материалов, используемых при формировании деталей с помощью аддитивных технологий, применяются различные виды специального технологического оборудования, перечисление и описание которых не предусмотрено рамками данной статьи.

Процесс создания изделия с применением аддитивных технологий можно представить в виде последовательности действий

Структура аддитивного технологического процесса производства изделий машиностроения

В соответствии с представленным на рис. 5 алгоритмом на первом этапе создания изделия осуществляется разработка 3D-модели с использованием CAD-программы в соответствии с техническим заданием и требованиями стандартов.

После этого необходимо экспортировать данные файла программы твердотельного моделирования в формат, воспринимаемый программой управляющей машины аддитивного производства (например, «STL»).
Перед следующим этапом проводится выявление возможных дефектов модели. Модель, предназначенная для 3D-печати, должна быть герметичной, монолитной и не содержать полых стенок, что обеспечивается с помощью специальных программ.

Далее осуществляется преобразование информации из STL-файла в команды, следуя которым 3D-принтер производит изделие, это так называемый G-код. Во время этой процедуры следует выбрать нужный масштаб детали, правильное положение в пространстве, а также точно позиционировать модель на рабочей поверхности. От этого зависит результат всего процесса, прочность, шероховатость поверхности детали и расход материала.

После выполнения настроек происходит разделение модели на слои материала, «укладываемые» в тело детали за один рабочий цикл аддитивной машины. Этот процесс получил название нарезка (slicing – англ.). Нарезка производится с помощью программного обеспечения, поставляемого с машиной, или с помощью специальных средств (Skein-forge, Slic3r, KISSlicer, MakerWare и др.).

Полученный на предыдущей стадии G-код передается на 3D-принтер через флеш-память или через USB-кабель.
В процессе подготовки и настройки аддитивной машины выполняются калибровка, предварительный нагрев рабочих органов, выбор модельного материала и задание зависящих от него параметров режимов работы оборудования.

На устройствах профессионального уровня этот этап может быть совмещен с процедурами процесса нарезки.

После того как выполнены все подготовительные операции, запускается процесс печати, то есть послойного объединения материалов. Его продолжи тельность зависит от типа технологии и выбранных параметров точности и качества изготовления детали.

Созданную деталь при необходимости подвергают дополнительным технологическим воздействиям: удаление поддерживающих опор, химическая или термическая обработка, финишная доводка рабочих поверхностей.
На заключительной стадии производства проводится контроль качества изготовления детали, включающий проверку соответствия нормативным требованиям геометрических размеров, показателей физико-механических свойств и других параметров, влияющих на потребительские свойства изделия.

Для строительных и транспортно-технологических машин перспективы применения аддитивных технологий в первую очередь очевидны при производстве следующих видов деталей:

Пластиковые корпусные детали электрических приборов;
комплектующие гидравлического оборудования (уплотнения направляющих поршней и поршни гидроцилиндров, разъемные соединения, элементы распределителей, насосов и гидромоторов);
изготовление патрубков систем охлаждения и питания двигателя;
детали отделки кабины оператора: рукояти рычагов, панели, переключатели, джойстики и др.;
корпусные, предохранительные, шарнирные и другие детали навесного рабочего оборудования;
втулки шарниров подвижных соединений, работающие в качестве подшипника скольжения рабочего оборудования.

Особый интерес представляет возможность применения аддитивных технологий для быстрого прототипирования при разработке рабочего оборудования строительных машин.

Разработка прототипа (макета) рабочего органа является важнейшим этапом создания машины. Прототип готового изделия не только дает представление о его внешнем виде и габаритно-массовых характеристиках, но также позволяет провести оценку соответствия достигнутых эксплуатационных свойств требованиям технического задания.

Рассмотрим процедуру прототипирования с применением аддитивных технологий на примере ковша экскаватора.
Быстрое прототипирование при проектировании новых модификаций ковшей обеспечивает:

Визуализацию внешнего вида ковша;
подтверждение совместимости кинематических параметров с базовой машиной;
возможность оценки заполнения ковша грунтом и его последующей разгрузки, что играет немаловажную роль при разработке грунтов, обладающих высокой липкостью или примерзаемостью;
возможность изучения процесса стружкообразования при резании грунта ковшом;
выявление зон, подверженных наибольшему абразивному износу при работе;
проработку технологических процессов сборки, сварки, механической обработки и покраски;
обучение сотрудников. Широкие возможности предоставляет
разнообразие типов и свойств модельных материалов, применяемых для прототипирования. Например, модель, созданная из прозрачного полимера, позволяет исследовать не только взаимодействие поверхностей рабочего органа экскаватора с грунтом при заполнении, но также и процессы, происходящие в разрабатываемом грунте. Это позволяет подобрать оптимальную форму ковша, обеспечивающую наименьшие сопротивление при копании грунта.


Цифровая модель прототипа ковша эксковатора

Анализ модели с помощью метода конечных элементов позволяет оценить распределение напряжений, возникающих в конструкции в процессе копания


Распределение внутренних напряжений в конструкции ковша экскаватора в процессе разработки грунта

Создание и испытание прототипа ковша обеспечивает:

Экономию средств на натурные испытания;
предотвращение ошибок при проектировании и сборке изделия;
снижение массы ковша;
повышение эффективности разработки грунта ковшом, что, в свою очередь, обеспечивает снижение расхода топлива;
повышение безотказности и долговечности рабочего оборудования;
возможность оценки срока службы ковша и интенсивности изнашивания зубьев в процессе разработки грунтов различных категорий. Процесс создания ковша экскаватора
с применением макета состоит из следующих этапов:
разработка цифровой 3D-модели ковша, проведение расчетов с помощью специализированных программных продуктов.
изготовление прототипа с помощью аддитивных технологий: подготовка модели к прототипированию, обоснование масштаба для макета и формирование ковша из термопластичного материала.
проведение испытаний и экспериментальных исследований прототипа ковша.
обработка и анализ результатов исследований, внесение необходимых изменений в конструкцию ковша, доработка конструкторской документации, согласование и начало производства.


Ковш экскаватора, изготовленный с учетом результатов исследований прототипа

При ремонте транспортно-технологических машин возможно использование аддитивных технологий для восстановления изношенных и поврежденных металлических деталей методами LENS, CLAD, DMD, что позволяет минимизировать применение ручного труда, повысить производительность и качество ремонта.

А вот изготовление деталей из полимерных материалов для ремонта может быть полезно следующим:

Взамен металлических – мера, снижающая простой техники из-за внезапного
отказа (временная замена). Что особенно актуально в компаниях, не проводящих мероприятия ППР. Для малого бизнеса, эксплуатирующего несколько единиц машин различного назначения, бюджет которого не позволяет содержать сотрудников для закупок запчастей или иметь запас деталей для замены;
вместо пластиковых позволит печатать детали индивидуального ремонтного размера;
применение композитных материалов по свойствам, превосходящим параметры исходной детали;
производство малого количества деталей в электротехнике и гидроприводе;
мобильность принтеров: возможно размещение в автомобиле;
относительно низкое энергопотребление.

Немаловажным фактором является и то, что при аддитивном производстве и восстановлении деталей разработчик может находиться на любом удалении от объекта (машины) благодаря широкому использованию компьютерных сетей.

Сканирование поврежденных комплектующих сборочных единиц при помощи 3D-сканера (реинжиниринг) с последующей компьютерной обработкой и печатью открывает перспективы создания универсальных многофункциональных производственно-ремонтных комплексов.
Сканирование существенно увеличивает скорость и точность производства детали, а также снижает расходы на измерительный инструмент. В настоящее время 3D-сканер уже применяется при проведении контроля качества изготовленных деталей на передовых предприятиях.

На сегодняшний день основными проблемами, сдерживающими внедрение аддитивных технологий в производство, являются ограниченный выбор используемых материалов и их высокая стоимость, ограниченность габаритных размеров создаваемых изделий и невысокая производительность оборудования. Но с учетом сложившейся динамики развития аддитивных технологий преодоление этих проблем в ближайшее время вполне реально.
Приведенные в статье результаты получены при разработке проекта № Б1124214, выполняемого в рамках проектной части Государственного задания в сфере научной деятельности за 2016 г.

Список использованной литературы
1. Слюсар, В.И. Фабрика в каждый дом. Вокруг света. — № 1 (2808).
2. Довбыш В.М., Забеднов П.В., Зленко М.А. Статья «Аддитивные технологии и изделия из металла» ГНЦ РФ ФГУП «НАМИ».
3. Зорин В.А. Баурова Н.И., Шакурова А.М. Применение капсулированных материалов при сборке и ремонте резьбовых соединений // Механизация строительства. 2014. № 8(842).
4. Зорин В.А. Баурова Н.И., Шакурова А.М. Исследование структуры капсулированного анаэробного клея // Клеи. Герметики. Технологии. 2014. № 5.
5. Баурова Н.И., Зорин В.А., Приходько В.М. Описание сценариев перехода материала из работоспособного состояния в неработоспособное с использованием уравнения теории катастроф «складка» // Клеи. Герметики. Технологии. 2014. № 8.
6. Баурова Н.И., Зорин В.А., Приходько В.М. Описание процессов деградации свойств материалов с использованием аппарата теории катастроф // Все материалы. Энциклопедический справочник. 2014. № 11.
Баурова Н.И., Сергеев А.Ю. Структурные исследования механизма разрушения клевых соединений после испытаний методом pull-out // Клеи. Герметики. Технологии. 2014. № 4.