Варистор параметры. Варистор - что это такое? Варисторы: принцип работы, типы и применение. Принцип действия варисторов на основе карбида кремния

Для обеспечения защиты электрических цепей специалисты применяют широкий набор самых разнообразных устройств. Одним из таких приборов является варистор. Он срабатывает при возникновении серьезных скачков в системе, тем самым регулируя ее работу. Как и любое другое устройство, варистору необходимы регулярные проверки его технического состояния. Из данной статьи можно узнать о наиболее важной информации, связанной с его функционированием.

Что такое варистор?

Для начала следует остановиться на том, что представляет собой это устройство.

  1. Данный прибор – это полупроводниковый резистор , уровень проводимости которого зависит от такого показателя, как величина приложенного напряжения.
  2. Кроме того, он относится к нелинейным типам приборов.

Принцип работы варистора прост. При наличии в электрической цепи нормального уровня напряжения варистор пропускает через себя малый ток. В случае достижения в системе, в силу обстоятельств, предельных значений напряжения, варистор открывается и пропускает все токовые силы . Таким образом, осуществляется регулировка работы электрической цепи.

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики . Например, предельно допустимое напряжение или необходимый для функционирования уровень тока.

Наиболее распространенными маркировками является обозначение вида CNR, которая дополняется такими элементами, как 07D390K. Обозначения имеют следующее значение:

  1. CNR – серия варистора. Приборы с данным обозначением являются металлооксидными.
  2. 07 – величина устройства в диаметре (7 миллиметров).
  3. D – дисковый прибор.
  4. 390 – предельно допустимый показатель уровня напряжения.

Основные параметры

Главными параметрами такого прибора являются:

  • Величина напряжения.
  • Предельно допустимый уровень переменного напряжения.
  • Предельно допустимый уровень постоянного напряжения.
  • Максимально возможное поглощение энергии, выраженное в джоулях.
  • Время срабатывания.
  • Допустимые погрешности в работе.




Для осуществления диагностики приборов предназначены специальные устройства, которые носят название тестеров. Для проведения проверки тестер необходимо включить и перевести в режим сопротивления. В том случае, если техническое состояние тестируемого аппарата отвечает всем необходимым требованиям , то данные на тестере будут отличаться очень большой величиной.

Если вы решили проверить свой прибор, то также следует удостовериться в его должном внешнем виде. Посмотрите внимательно, нет ли на приборе трещин и не подгорел ли он в каких-нибудь местах. Не стоит игнорировать данный совет и принижать роль внешнего вида аппарата – по утверждениям специалистов, тщательный визуальный осмотр прибора помогает избежать возникновения многих неприятных ситуаций.

Применение варисторов

В современном мире такой вид аппаратов имеют довольно широкую область применения. Они незаменимы в таких областях, как промышленное производство: их устанавливают на оборудовании. Частенько незаменим в бытовом применении. Эти проборы выполняют ряд важнейших функций:

  1. Обеспечивают надежную защиту полупроводниковых устройств – различных типов тиристоров, диодов и стабилизаторов.
  2. Создают высокий уровень электростатической защиты для входов разного рода радиоаппаратуры.
  3. Препятствуют негативному воздействию электромагнитных всплесков в устройствах с высокой индуктивной мощностью.
  4. Используются в качестве элемента для погашения искр в переключателях и другом оборудовании.

Достоинства

Этот вид аппаратов обладает целым рядом неоценимых преимуществ по сравнению с разрядниками и многими другими приборами.

К основным преимуществам можно отнести:

Недостатки

Однако, наряду с большим количеством преимуществ перед другими приборами прибор имеет также и некоторые недостатки. Среди них можно назвать такие моменты, как:

Во-первых, всегда нужно помнить, что иногда могут наступать так называемые критические условия – они с большой долей вероятности могут привести к взрыву устройства. Для предотвращения взрыва предназначены специальные устройства – защитные экраны. В них помещается вся конструкция варистора.

Во-вторых, следует не забывать, что кремневые варисторы по своим техническим характеристикам значительно уступают оксидным. Поэтому наиболее оптимальным вариантом является приобретение именно оксидного варистора.

Варистор – это радиоэлектронный элемент, применяемый в цепях защиты электронных приборов от перенапряжений в сети.

Он представляет собой полупроводниковый резистор, имеющий нелинейную вольт-амперную характеристику. Сопротивление варистора изменяется от сотен Мом до десятков Ом в зависимости от приложенного напряжения.

Полупроводниковый резистор включается параллельно с предохранителем в цепи питания электронных устройств для демпфирования воздействия всплесков напряжения в сети.

Обозначение варистора на схеме – это обозначение резистора, перечёркнутого ломаной линией, подразумевающей нелинейность.

В нормальном режиме работы полупроводниковый резистор имеет высокое сопротивление, но когда напряжение превышает номинальное, его сопротивление сильно падает, а ток возрастает из-за лавинного эффекта. Напряжение на нём остаётся на уровне чуть выше номинального, иными словами в этом режиме работает как стабилитрон.

Подключенный на входе цепей питания, полупроводниковый резистор вносит в цепь собственную ёмкость, которую нужно учитывать при проектировании, чтобы обеспечить устойчивую работу устройства. Значение ёмкости имеет прямо пропорциональную зависимость от площади и обратно пропорциональную от толщины.

Чтобы правильно подобрать элемент защиты от перегрузок цепей источника питания электронного устройства, необходимо знать входное сопротивление источника и мощность импульсов, возникающих при переходных процессах.

Длительность и период повторений выбросов напряжения определяет максимальное значение тока, которое может пропускать варистор. Если максимальное (пиковое) значение мало, то он перегреется и выйдет из строя.

Значит, для работы без отказов элемент должен эффективно рассеивать энергию импульса переходного процесса с возвратом в исходное состояние.

Классификация, достоинства и недостатки

По рабочему напряжению полупроводниковые резисторы делятся на:

Высоковольтные применяются для защиты от перенапряжений в электросетях и электроустановках, а низковольтные – для защиты цепей питания радиоэлектронных приборов и устройств.

К положительным характеристикам полупроводникового резистора можно отнести:

  • способность работать на высоких частотах с большими нагрузками;
  • невысокая стоимость;
  • широкая применяемость;
  • надёжность;
  • простота применения.

Его недостатки проявляются в создании повышенного низкочастотного шума и в зависимость их вольт-амперной характеристики от температуры.

Технология изготовления

Варисторы изготавливают из порошков оксида цинка и карбида кремния на основе технологии, называемой «керамической». Технология заключается в прессовании элементов из порошков с обжигом их в высокотемпературной печи и покрытием корпуса электроизоляционным и влагостойким лаком.

Стандартная технология позволяет изготавливать полупроводниковые резисторы по индивидуальному заказу.

Параметры

Полупроводниковые резисторы характеризуются следующими параметрами:

  • номинальное напряжение классификационное (В) – напряжение при котором варистор пропускает ток в 1 mA;
  • напряжение максимально допустимое переменное (В)– это величина переменного напряжения, при котором ток варистора резко возрастает и он выполняет свои защитные функции;
  • напряжение максимально допустимое постоянное (В)– величина постоянного напряжения, при котором, как и в предыдущем случае, варистор переходит в режим защиты;
  • напряжение ограничения максимальное (В)– величина максимального напряжения, которое варистор выдерживает без повреждения; при превышении его он выходит из строя: растрескивается, выгорает или разрушается на куски;
  • Максимальная поглощаемая энергия (Дж) – это максимальная энергия импульса, которую рассеивает варистор в виде тепла без разрушения;
  • Время срабатывания (нс) – время, в течение которого он переходит из высокоомного состояния в низкоомное; у большинства варисторов оно составляет десятки наносекунд;
  • Допустимое отклонение – значение отклонения от напряжения квалификационного (%). Выражается в виде стандартизованного ряда ±5%, ±10%, ±20% и т. д.

Маркировка варисторов, обозначения

На корпусе каждого элемента имеется маркировка из букв и цифр, расшифровка которых поведает о характеристиках электронного элемента.

Первые буквы в маркировке означают вид элемента: СН – сопротивление нелинейное.

Цифра в маркировке между двух дефисов – тип конструкции: 1 – стержневая, 2- дисковая.

Последующие цифры в ряду маркировки означают номинальное напряжение и допустимое отклонение в процентах.

Исправен ли варистор, как проверить?

Исправность элемента можно проверить несколькими способами:

  • Визуальным осмотром с целью определения подгораний, растрескиваний корпуса, потемнения корпуса, которые говорят о возможной неисправности элемента;
  • Измерением сопротивления с помощью омметра или мультиметра .

Заключение

В данной статье мы узнали, что такое варистор – это резистор из полупроводникового материала с нелинейной вольт-амперной характеристикой, который надёжным и простым способом защиты электронных приборов от импульсных перегрузок.

В случае резкого превышения номинального напряжения питания, полупроводниковый резистор резко понижая своё сопротивление , шунтирует цепь питания и берёт на себя нагрузку по резко возросшему току.

Varistors (название образовано от двух слов Variable Resistors - изменяющиеся сопротивления) - это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины. В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму, т. е. он может работать и на переменном напряжении. Варистор должен защищать подключённую к сети электроаппаратуру аппаратуру от перенапряжений – это его основная задача. В сети могут появляться не только кратковременные высоковольтные импульсы напряжения, но и долговременное повышение напряжения до 380В. При длительных перенапряжениях, примеру при перекосе фаз при использовании на другой фазе сварочного аппарата, варистор должен выдержать перенапряжение и не разрушиться до момента срабатывания защитного аппарата или предохранителя, стоящего перед ним. С увеличением напряжения растет ток через варистор, резко увеличиваясь до номинального значения варистора. Электрофизическая керамика широко используется в электротехнике высоких напряжений. Пример тому – варисторы - основа устройств защиты электросетей от коммутационных и грозовых перенапряжений. Оксидно-цинковые варисторы (ОЦВ) – наиболее популярный вид. Они изготавливается из поликристаллической многокомпонентной системы, в состав которой, наряду с оксидом цинка (Zn0), входят оксиды висмута (Bi2O3), сурьмы (Sb2O3), кобальта (Co3O4), марганца (MnO2), хрома (Cr2O3) и ряда других элементов.

Вот такие бывают варисторы:

варистор 220KD07 (14V)

варистор 270KD07 (17V)

варистор 330KD07 (20V)

варистор 390KD07 (25V)

варистор 560KD07 (35V)

варистор 680KD07 (40V)

варистор 101KD07 (60V)

варистор 121KD07 (75V)

варистор 121KD10 (75V)

варистор 151KD07 (95V)

варистор 151KD10 (95V)

варистор 181KD07 (115V)

варистор 181KD10 (115V)

варистор 221KD10 (140V)

варистор 241KD07 (150V)

варистор 241KD10 (150V)

варистор 241KD14 (150V)

варистор 271KD07 (175V)

варистор 271KD10 (175V)

варистор 301KD14 (200V)

варистор 331KD10 (210V)

варистор 331KD14 (210V)

варистор 361KD10 (230V)

варистор 361KD14 (230V)

варистор 361KD20 (230V)

варистор 391KD07 (250V)

варистор 391KD10 (250V)

варистор 391KD14 (250V)

варистор 391KD20 (250V)

варистор 431KD07 (275V)

варистор 431KD10 (275V)

варистор 431KD14 (275V)

варистор 431KD20 (275V)

варистор 471KD07 (300V)

варистор 471KD10 (300V)

варистор 471KD14 (300V)

варистор 471KD20 (300V)

варистор 561KD14 (350V)

варистор 561KD20 (350V)

варистор 561KD32 (350V)

варистор 621KD10 (385V)

варистор 621KD14 (385V)

варистор 621KD20 (385V)

варистор 681KD14 (420V)

варистор 681KD20 (420V)

варистор 821KD20 (510V)

варистор 102KD20 (625V)

Варисторы устанавливаются параллельно защищаемому электрооборудованию. В случае трехфазной нагрузки при соединении "звездой" они включаются в каждую фазу между фазой и землей, а при соединении нагрузки "треугольником" - между фазами. Наиболее предпочтительное место установки варисторов - сразу после коммутационного аппарата со стороны защищаемой нагрузки. Заводом "ПРОГРЕСС" выпускается очень удобный трехфазный ограничитель импульсных напряжений "Импульс-1", который представляет собой устройство для закрепления варисторов на электрощите, содержащее помещенные в корпус приспособления - держатели для трех варисторов, снабженные выводами. Это устройство позволяет легко реализовывать схемы защиты трехфазной нагрузки, соединенной как "звездой", так и "треугольником", а также защищать до трех независимых электроустановок, питающихся от однофазной сети.

Выбор типа используемого варистора и определение его классификационного напряжения осуществляется на основе анализа работы варистора в двух режимах: в рабочем и в импульсном.

1. Анализ работы варистора в рабочем режиме состоит в определении по таблице 1 такого классификационного напряжения, для которого длительное максимальное напряжение на нагрузке наиболее близко к табличному значению, но не превосходит его. Данные таблицы справедливы для варисторов с предельными отклонениями классификационного напряжения не более 10 % . для варисторов зарубежного производства в большинстве случаев указывается в составе маркировки.

2. Анализ работы варистора в импульсном режиме состоит в расчете максимальной мгновенной энергии по формуле:

E=P*tg(phi)/2п*f*n

где E - максимальная мгновенная энергия в джоулях, P - номинальная мощность нагрузки, приходящаяся на одну фазу (Вт), f - частота переменного напряжения (Гц), n - КПД защищаемой нагрузки. Такие расчеты обычно выполняются для нагрузок в несколько киловатт и более.

По таблице 2 выбирают тип варистора, обеспечивающего рассеивание энергии, значение которой рассчитано по приведенной формуле.

Таблица 1 В вольтах

максимально допустимое длительное действующее переменное напряжение

классифи- кационное напряжение

максимально допустимое длительное действующее переменное напряжение

максимально допустимое длительное постоянное напряжение

Таблица 2

Классифика-

Максимальная энергия рассеивания варисторов, Дж

ционное нап-

ряжение,В

Только имейте в виду некоторые производители пишут на варисторах классификационное напряжение варистора , а некоторые значение на переменный ток.

На варисторах российского производства пишется классификационное напряжение.

Основными параметрами, которые используют при описании характеристик варисторов, являются:

Un - классификационное напряжение, обычно измеряемое при токе 1 мА, - это условный параметр, который указывается при маркировке элементов;

Um – максимально допустимое действующее переменное

напряжение (среднеквадратичное);

Um= - максимально допустимое постоянное напряжение;

Р - номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W - максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса. От этой величины зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор.

Номинальное напряжение определяет максимально возможное напряжение, которое может быть применено к варистору. Превысить номинальное напряжение может только непродолжительный импульс перенапряжения, а именно ток перегрузки (импульсный) Imax и энергия импульса Wmax. При работе варистора к нему применяются амплитуда и количество импульсов, что и является характеристикой импульсов стандартной формы.

Wmax - энергия, которая рассеивается варистором, когда через него протекает импульса тока 10/1000. Характеристика Pmax должна иметься в виду, когда варистор не справляется с рассеиванием тепла в паузах между приложенными импульсами тока и перегревается. В целом Pmax зависит от размера и конструкции выводов варистора.

Обозначение варисторов:

Цифра до букв это диаметр варистора в мм. Цифры после букв это напряжение 431 = 430в, 471 = 470в. Бывает часто пишут маркировку без букв. Типа 7271, 10751.

Примеры: защита от скачков напряжений в ИБП ХВОХ-360 из Англии где 240в, стояло 2 параллельно варистора на 431 (430в).

Варистор в ИБП на 120в от игровой приставки WII из США стоял 7Z271 на 270в.

Варистор в ИБП на 220в от DVD плеера для России стоял 10Z471 на 470в.

Варистор в ИБП на 220в от CRT-телевизора Samsung 21" стоял TVR10751 (750в).

Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 нс, но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 нс). Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия. Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 не (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников). В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

Для сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В. Для варистора с классификационным напряжением 430 В при импульсе тока 100 А напряжение будет ограничено на уровне около 600 В.

Варисторы можно соединять последовательно и параллельно , у них сопротивление нелинейное, напряжение между ними само выровняется. По сути варистор можно считать двухсторонним (на зависящим от полярности) стабилитроном, только с более мягкой характеристикой. К примеру нужно получить варистор на 360В, для этого возьмем два по 180В и соединим их последовательно! Для увеличения мощности варистора из нескольких небольших, можно получить мощную сборку, соединив их параллельно, однако надо учесть что существует определенный разброс параметров классификационных напряжений у каждого варистора из сборки, поэтому применение одного более мощного варистора более предпочтительно. Чтобы обеспечить нормальную параллельную работу варисторов - необходимо строгое совпадение ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения - т.е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом путем подбора варисторов обеспечивают совпадение ВАХ столбов варисторов. Так поступают при создании высоковольтных, мощных ограничителей перенапряжений (ОПН).

Частой причиной выхода из строя оборудования, например, блоков питания, является наличие в сети импульсов перенапряжения. Они могут быть вызваны различными электромагнитными помехами, связанными с грозовыми разрядами, либо с коммутацией и разрядами индуктивных и емкостных элементов цепи, а также соответствующими переходными процессами.

Варистор серии 07K, 10K, 14K, 20K – оксидно-цинковый защитный элемент, обладающий способностью мгновенного изменения собственного сопротивления под воздействием подаваемого напряжения. Характерные резко выраженные нелинейные и симметричные вольтамперные характеристики предоставляют возможность эксплуатации варисторов в цепях постоянного, переменного и импульсного тока.

Принцип работы варистора заключается в его способности в считанные наносекунды (до 25 нс ) понижать собственное сопротивление до отметки в несколько Ом при воздействии напряжения, превышающего номинальное значение – напряжения срабатывания, ток срабатывания при этом может достигать 100А .

В обычном состоянии сопротивление варистора достигает нескольких сотен МОм, а поскольку подключают варисторы параллельно цепи , то ток через него не проходит и он выступает в роли диэлектрика. Импульсный скачок приводит варистор в действие, понижая его сопротивление – происходит короткое замыкание и перегорает плавкий предохранитель, который должен устанавливаться в обязательном порядке перед варистором, и цепь размыкается.

В момент срабатывания происходит шунтирование излишней нагрузки, поглощаемая энергия (до 282 Дж при импульсе тока 2,5 мс ) рассеивается в виде теплового излучения. Габаритные размеры варистора при этом играют значительную роль – общая площадь поверхности варистора имеет пропорциональное влияние на возможность гашения импульса напряжения без разрушения самого устройства.

Варисторы серии 07K, 10K, 14K, 20K имеют форму диска (дисковые варисторы) различной толщины с однонаправленными проволочными выводами радиального типа. Изготавливаются представленные варисторы методом прессования порошкообразного оксида цинка (ZnO).

На корпусе варисторов нанесена маркировка с указанием номинального классификационного напряжения и соответствующего допуска по напряжению (±10% ). На образцах варисторов импортного производства при маркировке допуска используют символьное обозначение, например, буква K обозначает допуск ±10%, буква M – допуск ±20%.

Устанавливаются варисторы параллельно защищаемому устройству с помощью пайки выводов. Для достижения максимального уровня защиты рекомендуется использование двух одинаковых варисторов, подключенных параллельно друг другу, и дополнительного плавкого предохранителя, устанавливаемого последовательно перед варисторами.

Применяются предоставленные варисторы 07K, 10K, 14K, 20K для защиты элементов от перенапряжения в источниках и системах электропитания, бытовой и военной технике, телекоммуникационном и измерительном оборудовании.

Подробные характеристики, расшифровка маркировки, габаритные размеры, общее устройство варисторов 07K , 10K , 14K , 20K указаны ниже. Наша компания гарантирует качество и работу варисторов в течение 2 лет с момента их приобретения; предоставляются сертификаты качества.

Окончательная цена на оксидно-цинковые варисторы 07K, 10K, 14K, 20K зависит от количества, сроков поставки и формы оплаты.

Варисторная защита, построенная на использовании полупроводниковых резисторов нелинейного типа, служит прекрасным средством для защиты от импульсных перенапряжений.

Варистор отличает резко-выраженная вольт-амперная характеристика нелинейного вида. Благодаря этому свойству с помощью варисторной защиты успешно решаются задачи по защите различных бытовых устройств и производственных объектов.

Принцип действия варистора

Варисторная защита подключается параллельно основному оборудованию, которое необходимо защитить. После возникновения импульса напряжения, благодаря наличию нелинейной характеристики, варистор шунтирует нагрузку и уменьшает величину сопротивления до нескольких долей Ома. Энергия, при перенапряжении, поглощается и рассеивается в виде тепла. Варистор как бы срезает импульс опасного перенапряжения, поэтому защищаемое устройство остается невредимым, что возможно даже с низким уровнем изоляции.

Рис. №1. Конструктивная схема варистора и его характеристика.

Условное обозначение варистора, например, СНI-1-1-1500. СН означает, нелинейное сопротивление, первая цифровое значение – материал, вторая – конструкцию (1- стержневой; 2 – дисковый), третья цифра – номер разработки, последняя цифра обозначает значение падения напряжения.

Таблица классификации варисторов

Конструктивные особенности варисторов

Наиболее технологически востребованные материалы для изготовления варистора оксид цинка или порошок карбида кремния, он позволяет успешно поглощать импульсы напряжения с высокоэнергетическими импульсами. Процесс изготовления строится на основе «керамической» технологии, которая заключается на запрессовке элементов с обжигом, установкой электродов, выводов и покрытие приборов электроизоляцией и влагозащитным слоем. Благодаря стандартной технологии варисторы можно делать по индивидуальному заказу.

Параметры варисторов

  1. Номинальное классификационное напряжение Uкл – считается постоянным показателем, при этом значении через прибор проходит расчетный ток.
  2. Максимально допустимое значение напряжения импульса, для варисторов стержневого типа входит в границы от 1,2 В до 2 В, для дисковых устройств в пределы от 3 до 4 В.
  3. Коэффициент нелинейности β – он показывает отношение сопротивления варистора к постоянному току к его сопротивлению переменному току.
  4. Быстродействие или время срабатывания, обозначает переход из высокоомного положения в низкоомное и может составить несколько нс, примерно, 25 нс.

Защита варисторами

Варисторы защитного типа, марок: ВР-2, ВР-2; СН2-1; СН2-2 рассчитаны на напряжение в границах от 68В до 1500 В, энергия рассеивания в диапазоне от 10 до 114 Дж, коэффициент нелинейности должен превышать значение 30.

Напряжение варисторов защитного класса удовлетворяет показателям максимально возможного пикового напряжения силовой связи, обязательно должно учитываться границы нестабильности напряжения до 10% и разброс величин классификационного напряжения в зависимости от технологических условий.

Uкл ≥ Uном * *1,1 * 1,1

Для сети U = 220В, Uкл ≥ 375 В.

Для трехфазной сети напряжением Uном = 380 В; Uкл ≥ 650 В

Сфера применения варисторов

Приборы используются в устройствах стабилизирующих высоковольтные источники напряжения в телевизорах, для обеспечения стабильного протекания токов в отклоняющих катушках кинескопов, они используются для размагничивания цветных кинескопов и в системах автоматического регулирования.

Варистор применяется в конструкции сетевого фильтра, он производит блокировку импульса перенапряжения и осуществляет защиту и по фазной, и по нулевой цепи.


Рис. №2. Сетевой фильтр с использованием варисторной защиты от импульсных перенапряжений, современная защита может погасить выброс энергии до 3400 Дж, это условие обеспечивает защиту от любых экстренных неожиданных ситуаций.

Большое распространение варисторы получили в конструкции мобильных телефонов для предохранения их от статичного электричества.

Автомобильная электроника и телекоммуникационные сети, еще одна распространенная сфера применения варисторов. Варисторы используются для люминесцентного освещения для защиты от перенапряжения ЭПРА.

Аналогом варисторной защиты служит молниезащита ОПН от перенапряжений и от гроз в высоковольтных цепях, на воздушных линиях и подстанциях.

Внутренняя электросеть в здании оборудуется шкафами от импульсных перенапряжений.

Рис. №3. ЩЗИП – щит от импульсного перенапряжения.

Конструктивная особенность защиты от перенапряжений в здании и размещения ее в щите. Это разнос шины заземления и фазного провода на большое расстояние друг от друга более 1 метра. Подборка элементов в шкафу и установка УЗИП требует внимательного расчета и выбирается в индивидуальном порядке для каждой определенной электроустановки.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.