Особенности и конструкция поворотных осей для чпу станка. Четырёхосевая обработка на станке с поворотной осью Станок с поворотной осью своими руками

С числовым программным управлением, повышающий производственные особенности рабочего инструмента. Она позволяет обрабатывать нестандартные заготовки, изготовляя изделия сложной формы. Оборудование дает возможность осуществления полноценной 3D и 4D обработки на станках с ЧПУ. Чаще всего агрегат используется для работы с деревом, но он может обрабатывать и другие материалы.

Особенности

Поворотные оси характерны не для каждого станка. Основная задача данного элемента – обеспечить вращение заготовки вокруг своей оси. С его помощью выполняется обработка заготовок, в основе которых лежит:

  • дерево;
  • алюминиевые, цветные и медные сплавы;
  • пластик.

За работу оси отвечает двигатель. Она может быть частью оригинальной конструкции станка, или же устанавливается отдельно. При отдельной установке элемент выступает в качестве четвертой оси.

Четырехосевая обработка в отличие от трехосевой имеет ряд преимуществ. Трехосевой способ дает возможность выполнить 3D обработку с одной стороны заготовки, поскольку другая будет прикреплена к столу. Чтобы обработать вторую сторону, приходится выполнять дополнительные действия по переустановке изделия. Поворотная ось позволила решить эту проблему. С ее помощью заготовку можно обработать со всех сторон без дополнительных действий.

Благодаря этой особенности можно получить изделия, имеющие сложную конструкцию:

  • мебельные комплектующие;
  • ювелирные изделия;
  • декоративные деревянные узоры.

Станки с поворотной осью широко распространены при оформлении декора. Правильная настройка прибора позволит обеспечить обработку в автономном режиме. Заготовки будут схожими с изделиями ручной работы.

Конструкция

Существуют различные варианты станков с поворотной осью. Наиболее качественными являются . На обычных приборах производительность более низкая.

На высокопроизводительных агрегатах устанавливается ременная передача. Некоторые модели оснащены пятой осью. Размеры рабочего стола могут варьироваться, но ширина и длина не должна быть меньше одного метра. Аппараты самодельного типа характеризуются установкой на поворотную ось токарного патрона или планшайбы. На заводских приборах распространены трехкулачковые токарные патроны.

Наиболее популярным типом двигателя является двухфазный на четыре провода.

Габариты и стоимость оборудования зависят от конкретной модели. Крупногабаритные варианты применяются в промышленных условиях. Более компактные модели можно использовать для бытовых задач и малого бизнеса. Но даже самые дешевые варианты смогут позволить себе далеко не все. Поэтому многие изготовляют ЧПУ станок самостоятельно.

Станок с поворотной осью своими руками

Неопытным пользователям не рекомендуется делать станок с поворотной осью из металла. Первоначально следует попробовать сделать агрегат из фанеры. На первом этапе составляется чертеж и управляющая фрезерная программа. Этот этап можно выполнить при помощи сервиса Rhinoceros. Толщина фанеры должна составлять не менее 15 миллиметров. Ее необходимо закрепить на столе, после чего станок с ЧПУ сделает нужные заготовки.

Второй этап заключается в сборке полученных деталей. После этого необходимо приобрести подшипник водяного насоса. Данный элемент продается в магазинах автозапчастей. Перед установкой подшипника детали необходимо покрыть лакокрасочным веществом. Подшипник можно укрепить при помощи болтов. Для работы прибора потребуется группа комплектующих, в числе которых:

  • стол для станка;
  • ременная передача;
  • шаговый двигатель.

Дополнительные детали изготовляются на токарном станке. После того, как сборка агрегата будет выполнена, потребуется отдельно докупить драйвер, отвечающий за управление шаговым двигателем. Новый драйвер необходимо поставить в блок управления станком.

Перед тем, как сделанная своими руками поворотная ось ЧПУ, будет запущена, нужно убедиться, что комплектующие хорошо закреплены.

Использование

Существуют два способа работы с поворотной осью:

  • индексный;
  • непрерывный.

Первый способ предполагает пошаговую обработку, начиная со свободных движений, и заканчивая неподвижными условиями. Переход от одной обработки к другой сопровождается остановкой и фиксацией. Для второго способа осуществлять дополнительные действия не требуется. Исправная обработка зависит от наличия программы и подходящей модели рабочего инструмента.

Для полноценной обработки станок должен быть обеспечен четырехкоординатной системой управления. Чтобы компенсировать вес шпинделя, ось Z оборудована газовой пружиной.

Общие характеристика и назначение

Поворотная ось предназначена для обеспечения поворота деталей на требуемый угол. Она представляет собой поворотный механизм, который позволяет осуществлять вращение заготовки в необходимом направлении и под определенным углом. 4 поворотная ось может быть использована для обработки заготовок из таких материалов, как пластик и дерево. Кроме того, ось применяют и для гравировки металлов. Поворотная ось для фрезерного станка ЧПУ позволяет создавать изделия различной сложности: с ее помощью можно изготавливать балясины, ручки, элементы декора с гравировкой, разнообразные статуэтки и другие сложные формы.

Существуют поворотные оси на ременном и гармоническом редукторе. В чем состоит их различие? Первый вариант больше подходит для обработки пластика и дерева, а второй – для работы с твердыми материалами, в частности, с металлом. Кроме того, оси подразделяются на 3-х и 4-х кулачковые. Ось первого типа предназначена для центровки заготовок, которые имеют круглую форму, а 4-х кулачковая ось – для заготовок прямоугольного сечения.

Преимущества поворотной оси для фрезерного станка,

Какие преимущества дает поворотная ось ? Эта деталь значительно расширяет возможности станков с ЧПУ: благодаря позиционированию заготовки в пространстве, становится доступным изготовление сложных изделий. Применение поворотной оси решает проблему автоматизации выполняемых работ: после ее установки обработка заготовок начинает осуществляться в автоматическом режиме. Кроме того, поворотная ось чпу позволят существенно сократить время на изготовление изделия. И, безусловно, поворотная ось делает работу на станке с ЧПУ не только более быстрой, но и более комфортной: после установки оси исчезает необходимость перестановки заготовки, поскольку для обработки потребуется закрепить ее только один раз. Важно отметить, что установка поворотной оси не вызывает сложностей: как правило, оси подходят для любых станков, а стандартные программы позволяют подключение данных устройств, поэтому перенастраивать их не понадобится.

Таким образом, поворотная ось ЧПУ для станков дает возможность в максимально короткие сроки изготавливать качественные изделия, требующие высокой точности. Соответственно, установка поворотной оси позволит существенно повысить производительность и увеличить прибыль.

После рассмотрения вариантов конструкции длинной оси - X - можно перейти к рассмотрению оси Y. Ось Y в виде портала - наиболее популярное решение в сообществе хоббийных станкостроителей, и неспроста. Это простое и вполне рабочее, хорошо себя зарекомендовавшее, решение. Однако, и в нем есть подводные камни и моменты, которые надо уяснить перед проектированием. Для портала крайне важна устойчивость и правильный баланс - это снизит износ направляющих и передач, снизит прогиб балки под нагрузкой, уменьшит вероятность подклинивания при перемещении. Для определения правильной компоновки посмотрим на силы, приложенные к порталу во время работы станка.

Рассмотрите схему хорошенько. На ней отмечены следующие размеры:

  • D1 - расстояние от области резания до цента расстояния между направляющими балки портала
  • D2 - расстояние между приводным винтом оси X до нижней направляющей балки
  • D3 - расстояние между направляющими оси Y
  • D4 - расстояние между линейными подшипниками оси X

Теперь рассмотрим действующие усилия. На картинке портал перемещается слева направо за счет вращения приводного винта оси X(расположен внизу), который приводит в движение гайку, зафиксированную снизу на портале. Шпиндель опущен и фрезерует заготовку, при этом появляется сила противодействия, направленная навстречу движению портала. Эта сила зависит от ускорения портала, скорости подачи, вращения шпинделя и силы отдачи с фрезы. Последняя зависит от собственно фрезы(типа, остроты, наличия смазки и т.п.), скорости вращения, материала и прочих факторов. Определению величины отдачи с фрезы посвящено множество литературы по подбору режимов резания, в настоящее время нам достаточно знать, что при движении портала возникает сложносоставная сила противодействия F. Сила F, приложенная к зафиксированному шпинделю, по конструктивным элементам прикладывается к балке портала в виде момента A = D1 * F. Данный момент может быть разложен на пару равных по модулю, но разнонаправленных сил A и B, приложенных к направляющим #1 и #2 балки портала. По модулю Сила А = Сила B = Момент А / D3. Как отсюда видно, силы, действующие на направляющие балки уменьшаются, если увеличивать D3 - расстояние между ними. Уменьшение сил снижает износ направляющих и крутильную деформацию балки. Также, с уменьшением силы А, уменьшается и момент B, приложенный к боковинам портала: Момент B = D2 * Сила A. Из-за большого момента B боковины, будучи не способными согнуться строго в плоскости, начнут виться и изгибаться. Момент B необходимо уменьшать также потому, что необходимо стремиться к тому, чтобы нагрузка всегда распределялась по всем линейным подшипникам равномерно - это снизит упругие деформации и вибрации станка,а, значит, повысит точность.

Момент B, как уже было сказано, можно уменьшить несколькими путями -

  1. уменьшить силу A.
  2. уменьшить плечо D3

Задача - сделать силы D и C сделать как можно более равными. Эти силы складываются из пары сил момента B и веса портала. Для правильного распределения веса надо рассчитать центр масс портала и разместить его точно между линейными подшипниками. Именно этим объясняется распространенная зигзагообразная конструкция боковин портала - это сделано для того, чтобы сместить направляющие назад и приблизить тяжелый шпиндель к подшипникам оси X.

Итого, при проектировании оси Y учитывайте следующие принципы:

  • Старайтесь минимизировать расстояние от приводного винта/рельсов оси X до направляющих оси Y - т.е. минимизируйте D2.
  • Снижайте по возможности вылет шпинделя относительно балки, минимизируйте расстояние D1 от области реза до направляющих. Оптимальным ходом по Z обычно считается 80-150 мм.
  • Снижайте по возможности высоту всего портала - высокий портал склонен к резонансу.
  • Рассчитывайте заранее центр масс всего портала, включая шпиндель и разрабатывайте стойки портала таким образом, чтобы центр масс располагался точно между каретками направляющих оси X и как можно ближе к ходовому винту оси X.
  • Разносите направляющие балки портала подальше - максимизируйте D3 для снижения момента, приложенного к балке.

КОНСТРУКЦИЯ ОСИ Z

Следующим шагом является выбор структуры наиболее важной части станка - оси Z. Ниже приведены 2 примера конструктивного исполнения.


Как было уже упомянуто, при строительстве станка с ЧПУ необходимо учитывать силы, возникающие при работе. И первым шагом на этом пути является отчетливое понимание природа, величины и направления этих сил. Рассмотрим схему ниже:

Силы, действующие на ось Z



На схеме отмечены следующие размеры:

  • D1 = расстояние между направляющими оси Y
  • D2 = расстояние вдоль направляющих между линейными подшипниками оси Z
  • D3 = длина подвижной платформы(базовой пластины), на которую собственно монтируется шпиндель
  • D4 = ширина всей конструкции
  • D5 = расстояние между направляющими оси Z
  • D6 = толщина базовой пластины
  • D7 = вертикальное расстояние от точки приложение сил реза до середины между каретками по оси Z

Посмотрим на вид спереди и отметим, что все конструкция перемещается вправо по направляющим оси Y. Базовая пластина выдвинута максимально вниз, фреза заглублена в материал и и при фрезеровке возникает сила противодействия F, направленная, естественно, противоположно направлению движения. Величина этой силы зависит от оборотов шпинделя, числа заходов фрезы, скорости подачи, материала, остроты фрезы и т.п.(напоминаем, что некоторые предварительные расчеты того, какие материалы будут фрезероваться, а значит, и оценка сил реза, должна быть сделана перед началом проектирования станка). Как влияет данная сила на ось Z? Будучи приложена на расстоянии от места, где закреплена базовая пластина, эта сила создает крутящий момент А = D7 * F. Момент, приложенный к базовой пластине, через линейные подшипники оси Z передается в виде пар поперечных сил на направляющие. Силы, преобразованная из момента, обратно пропорциональная расстоянию между точками приложения - следовательно, для снижения усилий, изгибающих направляющие, необходимо увеличивать расстояния D5 и D2.

Расстояние D2 также участвует в случае фрезерования вдоль оси X - при этом возникает аналогичная картина, только возникающий момент приложен на заметно большем рычаге. Этот момент старается провернуть шпиндель и базовую пластину, а возникающие силы перпендикулярны плоскости пластины. При этом момент равен силе реза F, умноженной на расстояние от точки реза до первой каретки - т.е. чем больше D2, тем меньше момент(при неизменной длине оси Z).

Отсюда следует правило: при прочих равных надо стараться обязательно разнести каретки оси Z подальше друг от друга, особенно по вертикали - это значительно увеличит жесткость. Возьмите за правило никогда не делать расстояние D2 меньше 1/2 длины базовой пластины. Также убедитесь, что толщина платформы D6 достаточна, чтобы обеспечить желаемую жесткость - для этого необходимо рассчитать максимальные рабочие усилия на фрезе и смоделировать прогиб пластины в САПР.

Итого , придерживайтесь следующих правил при конструировании оси Z портального станка:

  • максимизируйте D1 - это снизит момент(а следовательно, силы), действующий на стойки портала
  • максимизируйте D2 - это снизит момент, действующий на балку портала и ось Z
  • минимизируйте D3(в пределах заданного хода по Z)- это снизит момент, действующий на балку и стойки портал.
  • максимизируйте D4(расстояние между каретками оси Y) - это снизит момент, действующий на балку портала.

В привычной нам трехмерной системе координат есть три взаимно перпендикулярные оси (X, Y, Z), которые образуют базис.
Большинство станков с ЧПУ в начальной -базовой версии, производят только 3-х осевую обработку.
Однако для некоторых изделий сложной формы этого недостаточно. За счёт дополнительной модификации - установки поворотной оси, гравировально-фрезерные станки с ЧПУ способны производить 4-х осевую обработку.
Четырехосевая обработка на гравировально -фрезерном станке на станке с ЧПУ, с использованием поворотной оси- это в общем случае непрерывная обработка, как симметричных, так и несимметричных тел.
В отличие от обычной 3-х осевой обработки 3D модели, где деталь должна крепиться с одной стороны, к столу станка с ЧПУ, 4-х осевая фрезеровка даёт возможность обрабатывать изделие со всех сторон непрерывно, без дополнительных операций по перестановки детали на рабочем столе. Это позволяет получать изделия сложной формы. Изготовление балясин, капителей, колонн, столбов, ножек столов и стульев , шахматных фигур, а так -же различных статуэток, колец другой ювелирной и рекламно-сувенирной продукции это наиболее часто встречающиеся примеры такой обработки.
Многообразие форм, контуров - любой полет фантазии найдет воплощение при обработке деталей на гравировально - фрезерном станке с использованием 4-й поворотной оси.
Основной опцией модификации, как упоминалось ранее, 3-х осевого станка под 4-х осевой, является использование поворотной оси, рисунки 1 и 2.

На рисунке 1 представлена фотография поворотной оси для станка ЧПУ, которая позволяет вести многостороннюю обработку.

Рисунок 1 Поворотная ось для станка с ЧПУ.

фрезерный ЧПУ моделист3040

Видео резки сложной фигуры с использованием поворотной оси на примере шахматного коня

Установка поворотной оси на 3х осевой фрезерный ЧПУ cnc-3040al300

Рисунок 2 4-х осевой фрезерный станок с ЧПУ

Кроме этого, для непрерывной обработки по 4-м осям система ЧПУ станка должна ещё иметь возможность управлять установленной на нём повторной осью. Поэтому 4-х осевая обработка подразумевает не только наличие поворотной оси, но и использование соответствующей системы ЧПУ. Чаще всего для этого используется контроллер шаговых двигателей с 4-мя каналами управления или проще -4-х осевой контроллер. Пример контроллера приведён на рисунке 3. Канал А данного контроллера может использоваться для управления поворотной осью установленной на станке.

Рисунок 3.

Существует два типа 4-х координатной обработки: первый -непрерывная и второй - позиционная обработка (обработка с индексированием). Непрерывная обработка - в этом случае фреза одновременно перемещаются по всем степеням свободы.
Позиционная обработка - поворотная ось применяются только для изменения положения заготовки, а остальные операции производятся в режиме трехмерной обработки.

Для работы с поворотной осью необходимо произвести настройку программы управления. Ниже приведены настройки для Mach3 для поворотных осей с передаточным числом 6:1 и 4:1. На рисунке 4 приведены установки выводов LPT- порта для контроллера шаговых двигателей в алюминиевом корпусе показанного на рисунке 3.


Рисунок 4.

Рисунок 5 - настройки для поворотной оси с передаточным числом 4:1.


Рисунок 5.

Рисунок 6 — настройки для поворотной оси с передаточным числом 6:1.


Рисунок 6.


Рисунок 7.

Управляющие программы для работы с использованием многосторонней обработки возможна в программах DeskProto, PowerMill, и др.

На рисунке 8 показан результат многосторонней обработки на 4х осевом фрезерном чпу CNC-3040AL2

Рисунок 8. Многосторонняя обработка на 4х осевом настольном ЧПУ с использованием поворотной оси